Análise da qualidade de sono e da preferência diurna dos trabalhadores em turnos da área da saúde
PDF

Palavras-chave

Sono
Cronobiologia
Medicina do trabalho
Trabalho em turnos
Pessoal de saúde Sleep
Chronobiology
Occupational Medicine
Shift Work Schedule
Health Personnel

Resumo

Os profissionais da saúde estão sujeitos a trabalhos em turnos em horários não convencionais, o que muitas vezes, pode não coincidir com seus ritmos circadianos endógenos. Neste estudo, o objetivo foi investigar de qual modo a preferência diurna associa-se com os padrões do ciclo sono e vigília, em especial a qualidade do sono e da sonolência diurna excessiva. Para isso, foram aplicados questionários específicos para descrever os turnos de trabalho e para avaliar os parâmetros de sono. Utilizamos o questionário de Pittsburgh para avaliar a qualidade de sono, o de Epworth para avaliar a sonolência diurna e o HO para a preferência diurna. Os testes t de Student, de correlação de Pearson e de Análise de variância (ANOVA) foram utilizados a fim de analisar os parâmetros de sono dos trabalhadores em turnos de hospitais. A amostra constituiu-se de 59 indivíduos, de ambos os sexos, que trabalhavam no regime 12h de trabalho intercalados com 36h de folga em turnos diurnos ou noturnos. Verificamos que (i) a preferência diurna individual não é levada em conta na atribuição do turno; (ii) trabalhadores de ambos os turnos apresentam má qualidade de sono e (iii) queixas de sonolência diurna semelhantes. Entretanto, encontramos correlação entre a má qualidade de sono e a sonolência diurna excessiva somente entre os trabalhadores noturnos

https://doi.org/10.51909/recis.v1i1.42
PDF

Referências

Ferguson B, Shoff H, Shreffler J, McGowan J, Huecker M. Does My Emergency Department Doctor Sleep? The Trouble With Recovery From Night Shift. J Emerg Med. 2019;57(2):162–7.

Smarr BL, Schwartz MD, Wotus C, de la Iglesia HO. Re-examining “temporal niche”. Integr Comp Biol. 2013 Jul;53(1):165–74.

Roenneberg T, Merrow M. Entrainment of the human circadian clock. Cold Spring Harb Symp Quant Biol. 2007;72:293–9.

Vetter C. Circadian disruption: What do we actually mean? Vol. 51, European Journal of Neuroscience. Blackwell Publishing Ltd; 2020. p. 531–50.

Boivin DB, Boudreau P, James FO, Kin NM. Photic resetting in night-shift work: impact on nurses’ sleep. Chronobiolology Int. 2012;29(5):619–28.

Koenigsberg HW, Teicher MH, Mitropoulou V, Navalta C, New AS, Trestman R, et al. 24-h Monitoring of plasma norepinephrine, MHPG, cortisol, growth hormone and prolactin in depression. J Psychiatr Res. 2004 Jan;38(5):503–11.

Báez-Ruiz A, Guerrero-Vargas NN, Cázarez-Márquez F, Sabath E, Basualdo MDC, Salgado-Delgado R, et al. Food in synchrony with melatonin and corticosterone relieves constant light disturbed metabolism. J Endocrinol. 2017;235(3):167–78.

Heilbronn LK, Regmi P. Will Delaying Breakfast Mitigate the Metabolic Health Benefits of Time‐Restricted Eating? Obesity. 2020 Jul;28(S1).

Pereira DS, Tufik S, Pedrazzoli M. Moléculas que marcam o tempo: implicações para os fenótipos circadianos. Rev Bras Psiquiatr. 2009 Mar;31(1):63–71.

HALBERG F. Some physiological and clinical aspects of 24-hour periodicity. J Lancet. 1953;73(1):20—32.

Abbott SM, Malkani RG, Zee PC. Circadian disruption and human health: A bidirectional relationship. Vol. 51, European Journal of Neuroscience. Blackwell Publishing Ltd; 2020. p. 567–83.

Honma K, Hashimoto S, Nakao M, Honma S. Period and Phase Adjustments of Human Circadian Rhythms in the Real World. J Biol Rhythms. 2003 Jun;18(3):261–70.

Azzi A, Evans JA, Leise T, Myung J, Takumi T, Davidson AJ, et al. Network Dynamics Mediate Circadian Clock Plasticity. Neuron. 2017;93(2):441–50.

Liu AC, Lewis WG, Kay SA. Mammalian circadian signaling networks and therapeutic targets. Nat Chem Biol. 2007;3(10):630–9.

Koike BDV. Rastreamento de polimorfismos no gene AANAT e suas associações com a preferência diurna. Universidade Federal de São Paulo (UNIFESP). Universidade Federal de São Paulo (UNIFESP); 2009.

Richter HG, Torres-Farfń C, Rojas-García PP, Campino C, Torrealba F, Serón-Ferré M. The circadian timing system: Making sense of day/night gene expression. Biol Res. 2004;37(1):11–28.

Beersma DGM, Gordijn MCM. Circadian control of the sleep–wake cycle. Physiol Behav. 2007;90(2):190–5.

Folkard S, Lombardi DA. Modeling the impact of the components of long work hours on injuries and “accidents.” Am J Ind Med. 2006;49(11):953–63.

Daan S, Beersma DG, Borbely AA. Timing of human sleep: recovery process gated by a circadian pacemaker. Am J Physiol Integr Comp Physiol. 1984 Feb;246(2):R161–83.

Roenneberg T, Merrow M. The circadian clock and human health. Current Biology. 2016.

Benedito-Silva AA, Menna-Barreto L, Marques N, Tenreiro S. A self-assessment questionnaire for the determination of morningness-eveningness types in Brazil. Prog Clin Biol Res. 1990;341 B(February):89–98.

Menna-Barreto L. O tempo na biologia. Cronobiologia Princípios e Apl. 2003;26–9.

Horne JA, Ostberg O. A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol. 1976;4(2):97–110.

Johns MW. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep. 1991;14(6):540–5.

Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213.

Miller AD, Piro CC, Rudisill CN, Bookstaver PB, Bair JD, Bennett CL. Nighttime and weekend medication error rates in an inpatient pediatric population. Ann Pharmacother. 2010;

Kalmbach DA, Arnedt JT, Song PX, Guille C, Sen S. Sleep disturbance and short sleep as risk factors for depression and perceived medical errors in first-year residents. Sleep. 2017;40(3):1–8.

Harrington JM. Health effects of shift work and extended hours of work. Occup Environ Med. 2001;58(1):68–72.

Li JZ, Bunney BG, Meng F, Hagenauer MH, Walsh DM, Vawter MP. Circadian patterns of gene expression in the human brain and disruption in major depressive disorder. Pnas. 2013;110(24):9950–5.

de Oliveira IGB, Junior MDF, Lopes PR, Campos DBT, Ferreira-Neto ML, Santos EHR, et al. Forced internal desynchrony induces cardiometabolic alterations in adult rats. J Endocrinol. 2019 Aug;242(2):25–36.

Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science (80- ). 2010;330(6009):1349–54.

Swick TJ. The Neurology of Sleep: 2012. Sleep Med Clin. 2012 Sep;7(3):399–415.

Pantazopoulos H, Gamble K, Stork O, Amir S. Circadian Rhythms in Regulation of Brain Processes and Role in Psychiatric Disorders. Vol. 2018, Neural Plasticity. 2018. 175 p.

Wesermann W, Roysch, Schulz, Zofel. Circadian rhythm of serotonin binding in rat brain-. 1986;3(2):135–9.

Bunney PE, Zink AN, Holm AA, Billington CJ, Kotz CM. Orexin activation counteracts decreases in nonexercise activity thermogenesis (NEAT) caused by high-fat diet. Physiol Behav. 2017 Jul;176(12):139–48.

Abbott SM. Chronic sleep disturbance and neural injury. 2016;55–61.

Lees AJ, Blackburn NA, Campbell VL. The nighttime problems of Parkinson’s disease. Clin Neuropharmacol. 1988;

Tandberg E, Larsen JP, Karlsen K. A community-based study of sleep disorders in patients with Parkinson’s disease. Mov Disord. 1998;

Poe G, Walsh C, Bjorness T. Both duration and timing of sleep are important to memory consolidation. Sleep. 2010;33:1315–22.

Dijk D-J, von Schantz M. Timing and consolidation of human sleep, wakefulness, and performance by a symphony of oscillators. J Biol Rhythms. 2005;20(4):279–90.

Siegel JM. The REM sleep-memory consolidation hypothesis. Science. 2001;294(5544):1058–63.

Acosta MT. Sleep, memory and learning. Medicina (B Aires). 2019;79:29–32.

Ackermann S, Rasch B. Differential effects of non-REM and REM sleep on memory consolidation? Current Neurology and Neuroscience Reports. 2014.

Koike BDV, Farias KS, Billwiller F, Almeida-Filho D, Libourel PA, Tiran-Cappello A, et al. Electrophysiological evidence that the retrosplenial cortex displays a strong and specific activation phased with hippocampal theta during paradoxical (REM) sleep. J Neurosci. 2017;37(33):8003–13.

Hyman JM, Wyble BP, Goyal V, Rossi CA, Hasselmo ME. Stimulation in Hippocampal Region CA1 in Behaving Rats Yields Long-Term Potentiation when Delivered to the Peak of Theta and Long-Term Depression when Delivered to the Trough. J Neurosci. 2003;23(37):11725–31.

Boyce R, Glasgow SD, Williams S. Casual evidence for the role of REM sleep theta rhythm in contexual

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Copyright (c) 2020 Revista de Ensino, Ciência e Inovação em Saúde